18,478 research outputs found

    Enzymatic functionalization of carbon-hydrogen bonds

    Get PDF
    The development of new catalytic methods to functionalize carbon–hydrogen (C–H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C–H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C–H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C–H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references)

    On the scalar graviton in n-DBI gravity

    Full text link
    n-DBI gravity is a gravitational theory which yields near de Sitter inflation spontaneously at the cost of breaking Lorentz invariance by a preferred choice of foliation. We show that this breakdown endows n-DBI gravity with one extra physical gravitational degree of freedom: a scalar graviton. Its existence is established by Dirac's theory of constrained systems. Firstly, studying scalar perturbations around Minkowski space-time, we show that there exists one scalar degree of freedom and identify it in terms of the metric perturbations. Then, a general analysis is made in the canonical formalism, using ADM variables. It is useful to introduce an auxiliary scalar field, which allows recasting n-DBI gravity in an Einstein-Hilbert form but in a Jordan frame. Identifying the constraints and their classes we confirm the existence of an extra degree of freedom in the full theory, besides the two usual tensorial modes of the graviton. We then argue that, unlike the case of (the original proposal for) Horava-Lifschitz gravity, there is no evidence that the extra degree of freedom originates pathologies, such as vanishing lapse, instabilities and strong self-coupling at low energy scales.Comment: 30 pages, 1 figur
    • …
    corecore